最近看到牛顿迭代法和二分法,现在用python实现一下
拿开方举例,转载自Python编程实现二分法和牛顿迭代法求平方根代码
假设求根号5,二分法的基本思路是
a:折半: 5/2=2.5
b:平方校验: 2.5*2.5=6.25>5,并且得到当前上限2.5
c:再次向下折半:2.5/2=1.25
d:平方校验:1.25*1.25=1.5625<5,得到当前下限1.25
e:再次折半:2.5-(2.5-1.25)/2=1.875
f:平方校验:1.875*1.875=3.515625<5,得到当前下限1.875
每次得到当前值和5进行比较,并且记下下下限和上限,依次迭代,逐渐逼近平方根:
python代码
import math
from math import sqrt
def sqrt_binary(num):
x = sqrt(num)
y = num/2.0
low = 0.0
up = num*1.0
count = 1
while abs(y-x)>0.000001:
print(count,y)
count += 1
if y*y>num :
up = y
y = low+(y-low)/2
else:
low = y
y = up-(up-y)/2
return y
从函数意义上理解:我们是要求函数f(x)=x²,使f(x)=num的近似解,即x²-num=0的近似解。
从几何意义上理解:我们是要求抛物线g(x)=x²-num与x轴交点(g(x)=0)最接近的点。
我们假设g(x0)=0,即x0是正解,那么我们要做的就是让近似解x不断逼近x0,这是函数导数的定义:
可以由此得到
从几何图形上看,因为导数是切线,通过不断迭代,导数与x轴的交点会不断逼近x0。
对于一般情况:
将m=2代入:
def sqrt_newton(num):
x=sqrt(num)
y=num/2.0
count=1
while abs(y-x)>0.00000001:
print count,y
count+=1
y=((y*1.0)+(1.0*num)/y)/2.0000
return y
print(sqrt_newton(5))
print(sqrt(5))
def cube_newton(num):
x=num/3.0
y=0
count=1
while abs(x-y)>0.00000001:
print count,x
count+=1
y=x
x=(2.0/3.0)*x+(num*1.0)/(x*x*3.0)
return x
print(cube_newton(27))