xChar
·2 years ago

数据类型和应用场景

Redis 提供了丰富的数据类型,常见的有五种:String(字符串),Hash(哈希),List(列表),Set(集合)、Zset(有序集合)。随着 Redis 版本的更新,后面又支持了四种数据类型: BitMap(2.2 版新增)、HyperLogLog(2.8 版新增)、GEO(3.2 版新增)、Stream(5.0 版新增)。

String

String 是最基本的 key-value 结构,key 是唯一标识,value 是具体的值,value其实不仅是字符串, 也可以是数字(整数或浮点数),value 最多可以容纳的数据长度是 512M。

内部实现

String 类型的底层的数据结构实现主要是 intSDS(简单动态字符串)。

SDS 相比于 C 的原生字符串:

  • SDS 不仅可以保存文本数据,还可以保存二进制数据。因为 SDS 使用 len 属性的值而不是空字符来判断字符串是否结束,并且 SDS 的所有 API 都会以处理二进制的方式来处理 SDS 存放在 buf[] 数组里的数据。所以 SDS 不光能存放文本数据,而且能保存图片、音频、视频、压缩文件这样的二进制数据。
  • SDS 获取字符串长度的时间复杂度是 O(1)。因为 C 语言的字符串并不记录自身长度,所以获取长度的复杂度为 O(n);而 SDS 结构里用 len 属性记录了字符串长度,所以复杂度为 O(1)。
  • Redis 的 SDS API 是安全的,拼接字符串不会造成缓冲区溢出。因为 SDS 在拼接字符串之前会检查 SDS 空间是否满足要求,如果空间不够会自动扩容,所以不会导致缓冲区溢出的问题。

字符串对象的内部编码(encoding)有 3 种 :intrawembstr

如果一个字符串对象保存的是整数值,并且这个整数值可以用long类型来表示,那么字符串对象会将整数值保存在字符串对象结构的ptr属性里面(将void*转换成 long),并将字符串对象的编码设置为int。

如果字符串对象保存的是一个字符串,并且这个字符申的长度小于等于 32 字节(redis 2.+版本),那么字符串对象将使用一个简单动态字符串(SDS)来保存这个字符串,并将对象的编码设置为embstr, embstr编码是专门用于保存短字符串的一种优化编码方式。

image

如果字符串对象保存的是一个字符串,并且这个字符串的长度大于 32 字节(redis 2.+版本),那么字符串对象将使用一个简单动态字符串(SDS)来保存这个字符串,并将对象的编码设置为raw。

image

注意,embstr 编码和 raw 编码的边界在 redis 不同版本中是不一样的:

  • redis 2.+ 是 32 字节
  • redis 3.0-4.0 是 39 字节
  • redis 5.0 是 44 字节

可以看到embstr和raw编码都会使用SDS来保存值,但不同之处在于embstr会通过一次内存分配函数来分配一块连续的内存空间来保存redisObject和SDS,而raw编码会通过调用两次内存分配函数来分别分配两块空间来保存redisObject和SDS。Redis这样做会有很多好处:

  • embstr编码将创建字符串对象所需的内存分配次数从 raw 编码的两次降低为一次;
  • 释放 embstr编码的字符串对象同样只需要调用一次内存释放函数;
  • 因为embstr编码的字符串对象的所有数据都保存在一块连续的内存里面可以更好的利用 CPU 缓存提升性能。

但是 embstr 也有缺点的:

  • 如果字符串的长度增加需要重新分配内存时,整个redisObject和sds都需要重新分配空间,所以embstr编码的字符串对象实际上是只读的,redis没有为embstr编码的字符串对象编写任何相应的修改程序。当我们对embstr编码的字符串对象执行任何修改命令(例如append)时,程序会先将对象的编码从embstr转换成raw,然后再执行修改命令。

常用指令

# 设置 key-value 类型的值
> SET name lin
OK
# 根据 key 获得对应的 value
> GET name
"lin"
# 判断某个 key 是否存在
> EXISTS name
(integer) 1
# 返回 key 所储存的字符串值的长度
> STRLEN name
(integer) 3
# 删除某个 key 对应的值
> DEL name
(integer) 1

# 批量设置 key-value 类型的值
> MSET key1 value1 key2 value2 
OK
# 批量获取多个 key 对应的 value
> MGET key1 key2 
1) "value1"
2) "value2"

# 设置 key-value 类型的值
> SET number 0
OK
# 将 key 中储存的数字值增一
> INCR number
(integer) 1
# 将key中存储的数字值加 10
> INCRBY number 10
(integer) 11
# 将 key 中储存的数字值减一
> DECR number
(integer) 10
# 将key中存储的数字值键 10
> DECRBY number 10
(integer) 0

# 设置 key 在 60 秒后过期(该方法是针对已经存在的key设置过期时间)
> EXPIRE name  60 
(integer) 1
# 查看数据还有多久过期
> TTL name 
(integer) 51

#设置 key-value 类型的值,并设置该key的过期时间为 60 秒
> SET key  value EX 60
OK
> SETEX key  60 value
OK

# 不存在就插入(not exists)
>SETNX key value
(integer) 1

应用场景

缓存对象
  • 直接缓存整个对象的 JSON,命令例子: SET user:1 '{"name":"xiaolin", "age":18}'。
  • 采用将 key 进行分离为 user:ID:属性,采用 MSET 存储,用 MGET 获取各属性值,命令例子: MSET user:1:name xiaolin user:1:age 18 user:2:name xiaomei user:2:age 20。
常规计数

因为 Redis 处理命令是单线程,所以执行命令的过程是原子的。因此 String 数据类型适合计数场景,比如计算访问次数、点赞、转发、库存数量等等。

分布式锁

SET 命令有个 NX 参数可以实现「key不存在才插入」,可以用它来实现分布式锁:

  • 如果 key 不存在,则显示插入成功,可以用来表示加锁成功;
  • 如果 key 存在,则会显示插入失败,可以用来表示加锁失败。

一般而言,还会对分布式锁加上过期时间,分布式锁的命令如下:

SET lock_key unique_value NX PX 10000

而解锁的过程就是将 lock_key 键删除,但不能乱删,要保证执行操作的客户端就是加锁的客户端。所以,解锁的时候,我们要先判断锁的 unique_value 是否为加锁客户端,是的话,才将 lock_key 键删除。

共享 Session 信息

通常我们在开发后台管理系统时,会使用 Session 来保存用户的会话(登录)状态,这些 Session 信息会被保存在服务器端,但这只适用于单系统应用,如果是分布式系统此模式将不再适用。

因此,我们需要借助 Redis 对这些 Session 信息进行统一的存储和管理,这样无论请求发送到那台服务器,服务器都会去同一个 Redis 获取相关的 Session 信息,这样就解决了分布式系统下 Session 存储的问题。

List

List 列表是简单的字符串列表,按照插入顺序排序,可以从头部或尾部向 List 列表添加元素。列表的最大长度为 2^32 - 1,也即每个列表支持超过 40 亿个元素。

内部实现

List 类型的底层数据结构是由双向链表压缩列表实现的

  • 如果列表的元素个数小于 512 个(默认值,可由 list-max-ziplist-entries 配置),列表每个元素的值都小于 64 字节(默认值,可由 list-max-ziplist-value 配置),Redis 会使用压缩列表作为 List 类型的底层数据结构;
  • 如果列表的元素不满足上面的条件,Redis 会使用双向链表作为 List 类型的底层数据结构;

但是在 Redis 3.2 版本之后,List 数据类型底层数据结构就只由 quicklist 实现了,替代了双向链表和压缩列表。

常用指令

# 将一个或多个值value插入到key列表的表头(最左边),最后的值在最前面
LPUSH key value [value ...] 
# 将一个或多个值value插入到key列表的表尾(最右边)
RPUSH key value [value ...]
# 移除并返回key列表的头元素
LPOP key     
# 移除并返回key列表的尾元素
RPOP key 

# 返回列表key中指定区间内的元素,区间以偏移量start和stop指定,从0开始
LRANGE key start stop

# 从key列表表头弹出一个元素,没有就阻塞timeout秒,如果timeout=0则一直阻塞
BLPOP key [key ...] timeout
# 从key列表表尾弹出一个元素,没有就阻塞timeout秒,如果timeout=0则一直阻塞
BRPOP key [key ...] timeout

应用场景

消息队列

消息队列在存取消息时,必须要满足三个需求,分别是消息保序、处理重复的消息和保证消息可靠性。
Redis 的 List 和 Stream 两种数据类型,就可以满足消息队列的这三个需求。

List 作为消息队列有什么缺陷?

List 不支持多个消费者消费同一条消息,因为一旦消费者拉取一条消息后,这条消息就从 List 中删除了,无法被其它消费者再次消费。

要实现一条消息可以被多个消费者消费,那么就要将多个消费者组成一个消费组,使得多个消费者可以消费同一条消息,但是 List 类型并不支持消费组的实现。

Hash

Hash 是一个键值对(key - value)集合,其中 value 的形式如: value=[{field1,value1},...{fieldN,valueN}]。Hash 特别适合用于存储对象

内部实现

Hash 类型的底层数据结构是由压缩列表或哈希表实现的:

  • 如果哈希类型元素个数小于 512 个(默认值,可由 hash-max-ziplist-entries 配置),所有值小于 64 字节(默认值,可由 hash-max-ziplist-value 配置)的话,Redis 会使用压缩列表作为 Hash 类型的底层数据结构;
  • 如果哈希类型元素不满足上面条件,Redis 会使用哈希表作为 Hash 类型的 底层数据结构。

在 Redis 7.0 中,压缩列表数据结构已经废弃了,交由 listpack 数据结构来实现了。

常用命令

# 存储一个哈希表key的键值
HSET key field value   
# 获取哈希表key对应的field键值
HGET key field

# 在一个哈希表key中存储多个键值对
HMSET key field value [field value...] 
# 批量获取哈希表key中多个field键值
HMGET key field [field ...]       
# 删除哈希表key中的field键值
HDEL key field [field ...]    

# 返回哈希表key中field的数量
HLEN key       
# 返回哈希表key中所有的键值
HGETALL key 

# 为哈希表key中field键的值加上增量n
HINCRBY key field n                         

应用场景

缓存对象

Hash 类型的 (key,field, value) 的结构与对象的(对象id, 属性, 值)的结构相似,也可以用来存储对象。

# 存储一个哈希表uid:1的键值
> HMSET uid:1 name Tom age 15
2
# 存储一个哈希表uid:2的键值
> HMSET uid:2 name Jerry age 13
2
# 获取哈希表用户id为1中所有的键值
> HGETALL uid:1
1) "name"
2) "Tom"
3) "age"
4) "15"
购物车

以用户 id 为 key,商品 id 为 field,商品数量为 value,恰好构成了购物车的3个要素,如下图所示。
涉及的命令如下:

  • 添加商品:HSET cart:{用户id} {商品id} 1
  • 添加数量:HINCRBY cart:{用户id} {商品id} 1
  • 商品总数:HLEN cart:{用户id}
  • 删除商品:HDEL cart:{用户id} {商品id}
  • 获取购物车所有商品:HGETALL cart:{用户id}

前仅仅是将商品ID存储到了Redis 中,在回显商品具体信息的时候,还需要拿着商品 id 查询一次数据库,获取完整的商品的信息。

Set

Set 类型是一个无序唯一的键值集合,它的存储顺序不会按照插入的先后顺序进行存储。

一个集合最多可以存储 2^32-1 个元素。概念和数学中个的集合基本类似,可以交集,并集,差集等等,所以 Set 类型除了支持集合内的增删改查,同时还支持多个集合取交集、并集、差集。

内部实现

Set 类型的底层数据结构是由哈希表或整数集合实现的:

  • 如果集合中的元素都是整数且元素个数小于 512 (默认值,set-maxintset-entries配置)个,Redis 会使用整数集合作为 Set 类型的底层数据结构;
  • 如果集合中的元素不满足上面条件,则 Redis 使用哈希表作为 Set 类型的底层数据结构。

常用命令

# 往集合key中存入元素,元素存在则忽略,若key不存在则新建
SADD key member [member ...]
# 从集合key中删除元素
SREM key member [member ...] 
# 获取集合key中所有元素
SMEMBERS key
# 获取集合key中的元素个数
SCARD key

# 判断member元素是否存在于集合key中
SISMEMBER key member

# 从集合key中随机选出count个元素,元素不从key中删除
SRANDMEMBER key [count]
# 从集合key中随机选出count个元素,元素从key中删除
SPOP key [count]

# 交集运算
SINTER key [key ...]
# 将交集结果存入新集合destination中
SINTERSTORE destination key [key ...]

# 并集运算
SUNION key [key ...]
# 将并集结果存入新集合destination中
SUNIONSTORE destination key [key ...]

# 差集运算
SDIFF key [key ...]
# 将差集结果存入新集合destination中
SDIFFSTORE destination key [key ...]

应用场景

Set 类型比较适合用来数据去重和保障数据的唯一性,还可以用来统计多个集合的交集、错集和并集等,但是这里有一个潜在的风险。Set 的差集、并集和交集的计算复杂度较高,在数据量较大的情况下,如果直接执行这些计算,会导致 Redis 实例阻塞

点赞

Set 类型可以保证一个用户只能点一个赞,这里举例子一个场景,key 是文章id,value 是用户id。

# uid:1 用户对文章 article:1 点赞
> SADD article:1 uid:1
(integer) 1
# uid:2 用户对文章 article:1 点赞
> SADD article:1 uid:2
(integer) 1
# uid:3 用户对文章 article:1 点赞
> SADD article:1 uid:3
(integer) 1
uid:1 取消了对 article:1 文章点赞。

> SREM article:1 uid:1
(integer) 1
获取 article:1 文章所有点赞用户 :

> SMEMBERS article:1
1) "uid:3"
2) "uid:2"
获取 article:1 文章的点赞用户数量:

> SCARD article:1
(integer) 2
判断用户 uid:1 是否对文章 article:1 点赞了:

> SISMEMBER article:1 uid:1
(integer) 0  # 返回0说明没点赞,返回1则说明点赞了
共同关注

Set 类型支持交集运算,所以可以用来计算共同关注的好友、公众号等。

key 可以是用户id,value 则是已关注的公众号的id。

# uid:1 用户关注公众号 id 为 5、6、7、8、9
> SADD uid:1 5 6 7 8 9
(integer) 5
# uid:2  用户关注公众号 id 为 7、8、9、10、11
> SADD uid:2 7 8 9 10 11
(integer) 5

uid:1 和 uid:2 共同关注的公众号:

# 获取共同关注
> SINTER uid:1 uid:2
1) "7"
2) "8"
3) "9"

给 uid:2 推荐 uid:1 关注的公众号:

> SDIFF uid:1 uid:2
1) "5"
2) "6"
验证某个公众号是否同时被 uid:1 或 uid:2 关注:

> SISMEMBER uid:1 5
(integer) 1 # 返回0,说明关注了
> SISMEMBER uid:2 5
(integer) 0 # 返回0,说明没关注
抽奖活动

存储某活动中中奖的用户名 ,Set 类型因为有去重功能,可以保证同一个用户不会中奖两次。

key为抽奖活动名,value为员工名称,把所有员工名称放入抽奖箱 :

>SADD lucky Tom Jerry John Sean Marry Lindy Sary Mark
(integer) 5
如果允许重复中奖,可以使用 SRANDMEMBER 命令。

# 抽取 1 个一等奖:
> SRANDMEMBER lucky 1
1) "Tom"
# 抽取 2 个二等奖:
> SRANDMEMBER lucky 2
1) "Mark"
2) "Jerry"
# 抽取 3 个三等奖:
> SRANDMEMBER lucky 3
1) "Sary"
2) "Tom"
3) "Jerry"
如果不允许重复中奖,可以使用 SPOP 命令。

# 抽取一等奖1个
> SPOP lucky 1
1) "Sary"
# 抽取二等奖2个
> SPOP lucky 2
1) "Jerry"
2) "Mark"
# 抽取三等奖3个
> SPOP lucky 3
1) "John"
2) "Sean"
3) "Lindy"

Zet

Zset 类型(有序集合类型)相比于 Set 类型多了一个排序属性 score(分值),对于有序集合 ZSet 来说,每个存储元素相当于有两个值组成的,一个是有序集合的元素值,一个是排序值。

有序集合保留了集合不能有重复成员的特性(分值可以重复),但不同的是,有序集合中的元素可以排序。

内部实现

Zset 类型的底层数据结构是由压缩列表或跳表实现的:

  • 如果有序集合的元素个数小于 128 个,并且每个元素的值小于 64 字节时,Redis 会使用压缩列表作为 Zset 类型的底层数据结构;
  • 如果有序集合的元素不满足上面的条件,Redis 会使用跳表作为 Zset 类型的底层数据结构;

在 Redis 7.0 中,压缩列表数据结构已经废弃了,交由 listpack 数据结构来实现了。

常用命令

Zset 常用操作:

# 往有序集合key中加入带分值元素
ZADD key score member [[score member]...]   
# 往有序集合key中删除元素
ZREM key member [member...]                 
# 返回有序集合key中元素member的分值
ZSCORE key member
# 返回有序集合key中元素个数
ZCARD key 

# 为有序集合key中元素member的分值加上increment
ZINCRBY key increment member 

# 正序获取有序集合key从start下标到stop下标的元素
ZRANGE key start stop [WITHSCORES]
# 倒序获取有序集合key从start下标到stop下标的元素
ZREVRANGE key start stop [WITHSCORES]

# 返回有序集合中指定分数区间内的成员,分数由低到高排序。
ZRANGEBYSCORE key min max [WITHSCORES] [LIMIT offset count]

# 返回指定成员区间内的成员,按字典正序排列, 分数必须相同。
ZRANGEBYLEX key min max [LIMIT offset count]
# 返回指定成员区间内的成员,按字典倒序排列, 分数必须相同
ZREVRANGEBYLEX key max min [LIMIT offset count]
Zset 运算操作(相比于 Set 类型,ZSet 类型没有支持差集运算):

# 并集计算(相同元素分值相加),numberkeys一共多少个key,WEIGHTS每个key对应的分值乘积
ZUNIONSTORE destkey numberkeys key [key...] 
# 交集计算(相同元素分值相加),numberkeys一共多少个key,WEIGHTS每个key对应的分值乘积
ZINTERSTORE destkey numberkeys key [key...]

应用场景

排行榜
 arcticle:1 文章获得了200个赞
> ZADD user:xiaolin:ranking 200 arcticle:1
(integer) 1
# arcticle:2 文章获得了40个赞
> ZADD user:xiaolin:ranking 40 arcticle:2
(integer) 1
# arcticle:3 文章获得了100个赞
> ZADD user:xiaolin:ranking 100 arcticle:3
(integer) 1
# arcticle:4 文章获得了50个赞
> ZADD user:xiaolin:ranking 50 arcticle:4
(integer) 1
# arcticle:5 文章获得了150个赞
> ZADD user:xiaolin:ranking 150 arcticle:5
(integer) 1
文章 arcticle:4 新增一个赞,可以使用 ZINCRBY 命令(为有序集合key中元素member的分值加上increment):

> ZINCRBY user:xiaolin:ranking 1 arcticle:4
"51"
查看某篇文章的赞数,可以使用 ZSCORE 命令(返回有序集合key中元素个数):

> ZSCORE user:xiaolin:ranking arcticle:4
"50"
获取小林文章赞数最多的 3 篇文章,可以使用 ZREVRANGE 命令(倒序获取有序集合 key 从start下标到stop下标的元素):

# WITHSCORES 表示把 score 也显示出来
> ZREVRANGE user:xiaolin:ranking 0 2 WITHSCORES
1) "arcticle:1"
2) "200"
3) "arcticle:5"
4) "150"
5) "arcticle:3"
6) "100"
获取小林 100 赞到 200 赞的文章,可以使用 ZRANGEBYSCORE 命令(返回有序集合中指定分数区间内的成员,分数由低到高排序):

> ZRANGEBYSCORE user:xiaolin:ranking 100 200 WITHSCORES
1) "arcticle:3"
2) "100"
3) "arcticle:5"
4) "150"
5) "arcticle:1"
6) "200"

BitMap

Bitmap,即位图,是一串连续的二进制数组(0和1),可以通过偏移量(offset)定位元素。BitMap通过最小的单位bit来进行0|1的设置,表示某个元素的值或者状态,时间复杂度为O(1)。

由于 bit 是计算机中最小的单位,使用它进行储存将非常节省空间,特别适合一些数据量大且使用二值统计的场景。

内部实现

Bitmap 本身是用 String 类型作为底层数据结构实现的一种统计二值状态的数据类型。

String 类型是会保存为二进制的字节数组,所以,Redis 就把字节数组的每个 bit 位利用起来,用来表示一个元素的二值状态,你可以把 Bitmap 看作是一个 bit 数组。

bitmap 基本操作:


# 设置值,其中value只能是 0 和 1
SETBIT key offset value

# 获取值
GETBIT key offset

# 获取指定范围内值为 1 的个数
# start 和 end 以字节为单位
BITCOUNT key start end
bitmap 运算操作:

# BitMap间的运算
# operations 位移操作符,枚举值
  AND 与运算 &
  OR 或运算 |
  XOR 异或 ^
  NOT 取反 ~
# result 计算的结果,会存储在该key中
# key1 … keyn 参与运算的key,可以有多个,空格分割,not运算只能一个key
# 当 BITOP 处理不同长度的字符串时,较短的那个字符串所缺少的部分会被看作 0。返回值是保存到 destkey 的字符串的长度(以字节byte为单位),和输入 key 中最长的字符串长度相等。
BITOP [operations] [result] [key1] [keyn…]

# 返回指定key中第一次出现指定value(0/1)的位置
BITPOS [key] [value]

应用场景

签到统计
假设我们要统计 ID 100 的用户在 2022 年 6 月份的签到情况,就可以按照下面的步骤进行操作。

第一步,执行下面的命令,记录该用户 6 月 3 号已签到。

SETBIT uid:sign:100:202206 2 1
第二步,检查该用户 6 月 3 日是否签到。

GETBIT uid:sign:100:202206 2 
第三步,统计该用户在 6 月份的签到次数。

BITCOUNT uid:sign:100:202206
这样,我们就知道该用户在 6 月份的签到情况了。

我们可以通过执行这条命令来获取 userID = 100 在 2022 年 6 月份首次打卡日期:

BITPOS uid:sign:100:202206 1
连续签到用户个数

假设要统计 3 天连续打卡的用户数,则是将三个 bitmap 进行 AND 操作,并将结果保存到 destmap 中,接着对 destmap 执行 BITCOUNT 统计,如下命令:

# 与操作
BITOP AND destmap bitmap:01 bitmap:02 bitmap:03
# 统计 bit 位 =  1 的个数
BITCOUNT destmap

即使一天产生一个亿的数据,Bitmap 占用的内存也不大,大约占 12 MB 的内存(10^8/8/1024/1024),7 天的 Bitmap 的内存开销约为 84 MB。同时我们最好给 Bitmap 设置过期时间,让 Redis 删除过期的打卡数据,节省内存。

HyperLogLog

HyperLogLog 提供不精确的去重计数。在 Redis 里面,每个 HyperLogLog 键只需要花费 12 KB 内存,就可以计算接近 2^64 个不同元素的基数,和元素越多就越耗费内存的 Set 和 Hash 类型相比,HyperLogLog 就非常节省空间。

内部实现

常见命令

# 添加指定元素到 HyperLogLog 中
PFADD key element [element ...]

# 返回给定 HyperLogLog 的基数估算值。
PFCOUNT key [key ...]

# 将多个 HyperLogLog 合并为一个 HyperLogLog
PFMERGE destkey sourcekey [sourcekey ...]

应用场景

百万级网页 UV 计数
在统计 UV 时,你可以用 PFADD 命令(用于向 HyperLogLog 中添加新元素)把访问页面的每个用户都添加到 HyperLogLog 中。

PFADD page1:uv user1 user2 user3 user4 user5
接下来,就可以用 PFCOUNT 命令直接获得 page1 的 UV 值了,这个命令的作用就是返回 HyperLogLog 的统计结果。

PFCOUNT page1:uv

GEO

主要用于存储地理位置信息,并对存储的信息进行操作。
在日常生活中,我们越来越依赖搜索“附近的餐馆”、在打车软件上叫车,这些都离不开基于位置信息服务(Location-Based Service,LBS)的应用。LBS 应用访问的数据是和人或物关联的一组经纬度信息,而且要能查询相邻的经纬度范围,GEO 就非常适合应用在 LBS 服务的场景中。

内部实现

GEO 本身并没有设计新的底层数据结构,而是直接使用了 Sorted Set 集合类型。

GEO 类型使用 GeoHash 编码方法实现了经纬度到 Sorted Set 中元素权重分数的转换,这其中的两个关键机制就是「对二维地图做区间划分」和「对区间进行编码」。一组经纬度落在某个区间后,就用区间的编码值来表示,并把编码值作为 Sorted Set 元素的权重分数。

这样一来,我们就可以把经纬度保存到 Sorted Set 中,利用 Sorted Set 提供的“按权重进行有序范围查找”的特性,实现 LBS 服务中频繁使用的“搜索附近”的需求。

常见命令

# 存储指定的地理空间位置,可以将一个或多个经度(longitude)、纬度(latitude)、位置名称(member)添加到指定的 key 中。
GEOADD key longitude latitude member [longitude latitude member ...]

# 从给定的 key 里返回所有指定名称(member)的位置(经度和纬度),不存在的返回 nil。
GEOPOS key member [member ...]

# 返回两个给定位置之间的距离。
GEODIST key member1 member2 [m|km|ft|mi]

# 根据用户给定的经纬度坐标来获取指定范围内的地理位置集合。
GEORADIUS key longitude latitude radius m|km|ft|mi [WITHCOORD] [WITHDIST] [WITHHASH] [COUNT count] [ASC|DESC] [STORE key] [STOREDIST key]

应用场景

执行下面的这个命令,就可以把 ID 号为 33 的车辆的当前经纬度位置存入 GEO 集合中:
> GEOADD cars:locations 116.034579 39.030452 33

当用户想要寻找自己附近的网约车时,LBS 应用就可以使用 GEORADIUS 命令。
例如,LBS 应用执行下面的命令时,Redis 会根据输入的用户的经纬度信息(116.054579,39.030452 ),查找以这个经纬度为中心的 5 公里内的车辆信息,并返回给 LBS 应用。

> GEORADIUS cars:locations 116.054579 39.030452 5 km ASC COUNT 10

Stream

Redis Stream 是 Redis 5.0 版本新增加的数据类型,Redis 专门为消息队列设计的数据类型。
用于完美地实现消息队列,它支持消息的持久化、支持自动生成全局唯一 ID、支持 ack 确认消息的模式、支持消费组模式等,让消息队列更加的稳定和可靠。

常见命令

Stream 消息队列操作命令:

XADD:插入消息,保证有序,可以自动生成全局唯一 ID;
XLEN :查询消息长度;
XREAD:用于读取消息,可以按 ID 读取数据;
XDEL : 根据消息 ID 删除消息;
DEL :删除整个 Stream;
XRANGE :读取区间消息
XREADGROUP:按消费组形式读取消息;
XPENDING 和 XACK:
XPENDING 命令可以用来查询每个消费组内所有消费者「已读取、但尚未确认」的消息;
XACK 命令用于向消息队列确认消息处理已完成;

应用场景

生产者通过 XADD 命令插入一条消息:

# * 表示让 Redis 为插入的数据自动生成一个全局唯一的 ID
# 往名称为 mymq 的消息队列中插入一条消息,消息的键是 name,值是 xiaolin
> XADD mymq * name xiaolin
"1654254953808-0"

消费者通过 XREAD 命令从消息队列中读取消息时,可以指定一个消息 ID,并从这个消息 ID 的下一条消息开始进行读取(注意是输入消息 ID 的下一条信息开始读取,不是查询输入ID的消息)。

# 从 ID 号为 1654254953807-0 的消息开始,读取后续的所有消息(示例中一共 1 条)。
> XREAD STREAMS mymq 1654254953807-0
1) 1) "mymq"
   2) 1) 1) "1654254953808-0"
         2) 1) "name"
            2) "xiaolin"

如果想要实现阻塞读(当没有数据时,阻塞住),可以调用 XRAED 时设定 BLOCK 配置项,实现类似于 BRPOP 的阻塞读取操作。

比如,下面这命令,设置了 BLOCK 10000 的配置项,10000 的单位是毫秒,表明 XREAD 在读取最新消息时,如果没有消息到来,XREAD 将阻塞 10000 毫秒(即 10 秒),然后再返回。

# 命令最后的“$”符号表示读取最新的消息
> XREAD BLOCK 10000 STREAMS mymq $
(nil)
(10.00s)

Stream 可以以使用 XGROUP 创建消费组,创建消费组之后,Stream 可以使用 XREADGROUP 命令让消费组内的消费者读取消息。

创建两个消费组,这两个消费组消费的消息队列是 mymq,都指定从第一条消息开始读取:

# 创建一个名为 group1 的消费组,0-0 表示从第一条消息开始读取。
> XGROUP CREATE mymq group1 0-0
OK
# 创建一个名为 group2 的消费组,0-0 表示从第一条消息开始读取。
> XGROUP CREATE mymq group2 0-0
OK

消费组 group1 内的消费者 consumer1 从 mymq 消息队列中读取所有消息的命令如下:

# 命令最后的参数“>”,表示从第一条尚未被消费的消息开始读取。
> XREADGROUP GROUP group1 consumer1 STREAMS mymq >
1) 1) "mymq"
   2) 1) 1) "1654254953808-0"
         2) 1) "name"
            2) "xiaolin"

消息队列中的消息一旦被消费组里的一个消费者读取了,就不能再被该消费组内的其他消费者读取了,即同一个消费组里的消费者不能消费同一条消息。
但是,不同消费组的消费者可以消费同一条消息(但是有前提条件,创建消息组的时候,不同消费组指定了相同位置开始读取消息)。
使用消费组的目的是让组内的多个消费者共同分担读取消息,所以,我们通常会让每个消费者读取部分消息,从而实现消息读取负载在多个消费者间是均衡分布的。

基于 Stream 实现的消息队列,如何保证消费者在发生故障或宕机再次重启后,仍然可以读取未处理完的消息?

Streams 会自动使用内部队列(也称为 PENDING List)留存消费组里每个消费者读取的消息,直到消费者使用 XACK 命令通知 Streams“消息已经处理完成”。

好了,基于 Stream 实现的消息队列就说到这里了,小结一下:

  • 消息保序:XADD/XREAD
  • 阻塞读取:XREAD block
  • 重复消息处理:Stream 在使用 XADD 命令,会自动生成全局唯一 ID;
  • 消息可靠性:内部使用 PENDING List 自动保存消息,使用 XPENDING 命令查看消费组已经读取但是未被确认的消息,消费者使用 XACK 确认消息;
  • 支持消费组形式消费数据

Redis 基于 Stream 消息队列与专业的消息队列有哪些差距?

一个专业的消息队列,必须要做到两大块:

  • 消息不丢。
  • 消息可堆积。
  1. Redis Stream 消息会丢失吗?

一个消息队列,其实就分为三大块:生产者、队列中间件、消费者
Redis Stream 消息队列能不能保证三个环节都不丢失数据?

  • Redis 生产者会不会丢消息?生产者会不会丢消息,取决于生产者对于异常情况的处理是否合理。 从消息被生产出来,然后提交给 MQ 的过程中,只要能正常收到 ( MQ 中间件) 的 ack 确认响应,就表示发送成功,所以只要处理好返回值和异常,如果返回异常则进行消息重发,那么这个阶段是不会出现消息丢失的。
  • Redis 消费者会不会丢消息?不会,因为 Stream ( MQ 中间件)会自动使用内部队列(也称为 PENDING List)留存消费组里每个消费者读取的消息,但是未被确认的消息。消费者可以在重启后,用 XPENDING 命令查看已读取、但尚未确认处理完成的消息。等到消费者执行完业务逻辑后,再发送消费确认 XACK 命令,也能保证消息的不丢失。
  • Redis 消息中间件会不会丢消息?,Redis 在以下 2 个场景下,都会导致数据丢失:
    • AOF 持久化配置为每秒写盘,但这个写盘过程是异步的,Redis 宕机时会存在数据丢失的可能
    • 主从复制也是异步的,主从切换时,也存在丢失数据的可能。
  1. Redis Stream 消息可堆积吗?

Redis 的数据都存储在内存中,这就意味着一旦发生消息积压,则会导致 Redis 的内存持续增长,如果超过机器内存上限,就会面临被 OOM 的风险。
所以 Redis 的 Stream 提供了可以指定队列最大长度的功能,就是为了避免这种情况发生。
当指定队列最大长度时,队列长度超过上限后,旧消息会被删除,只保留固定长度的新消息。这么来看,Stream 在消息积压时,如果指定了最大长度,还是有可能丢失消息的。
但 Kafka、RabbitMQ 专业的消息队列它们的数据都是存储在磁盘上,当消息积压时,无非就是多占用一些磁盘空间。

因此,把 Redis 当作队列来使用时,会面临的 2 个问题:

  • Redis 本身可能会丢数据;
  • 面对消息挤压,内存资源会紧张;

所以,能不能将 Redis 作为消息队列来使用,关键看你的业务场景:

  • 如果你的业务场景足够简单,对于数据丢失不敏感,而且消息积压概率比较小的情况下,把 Redis 当作队列是完全可以的。
  • 如果你的业务有海量消息,消息积压的概率比较大,并且不能接受数据丢失,那么还是用专业的消息队列中间件吧。

Redis 数据结构

键值对

Redis 的键值对中的 key 就是字符串对象,而 value 可以是字符串对象,也可以是集合数据类型的对象,比如 List 对象、Hash 对象、Set 对象和 Zset 对象。

这些键值对是如何保存在 Redis 中的呢?

Redis 是使用了一个「哈希表」保存所有键值对,哈希表的最大好处就是让我们可以用 O(1) 的时间复杂度来快速查找到键值对。哈希表其实就是一个数组,数组中的元素叫做哈希桶。

Redis 的哈希桶是怎么保存键值对数据的呢?

哈希桶存放的是指向键值对数据的指针(dictEntry*),这样通过指针就能找到键值对数据,然后因为键值对的值可以保存字符串对象和集合数据类型的对象,所以键值对的数据结构中并不是直接保存值本身,而是保存了 void * key 和 void * value 指针,分别指向了实际的键对象和值对象,这样一来,即使值是集合数据,也可以通过 void * value 指针找到。

SDS

数据结构中的每个成员变量分别介绍下:

  • len,记录了字符串长度。这样获取字符串长度的时候,只需要返回这个成员变量值就行,时间复杂度只需要 O(1)。
  • alloc,分配给字符数组的空间长度。这样在修改字符串的时候,可以通过 alloc - len 计算出剩余的空间大小,可以用来判断空间是否满足修改需求,如果不满足的话,就会自动将 SDS 的空间扩展至执行修改所需的大小,然后才执行实际的修改操作,所以使用 SDS 既不需要手动修改 SDS 的空间大小,也不会出现前面所说的缓冲区溢出的问题。
  • flags,用来表示不同类型的 SDS。一共设计了 5 种类型,分别是 sdshdr5、sdshdr8、sdshdr16、sdshdr32 和 sdshdr64,后面在说明区别之处。
  • buf[],字符数组,用来保存实际数据。不仅可以保存字符串,也可以保存二进制数据。

SDS 相比于 C 的原生字符串:

  • SDS 不仅可以保存文本数据,还可以保存二进制数据。因为 SDS 使用 len 属性的值而不是空字符来判断字符串是否结束,并且 SDS 的所有 API 都会以处理二进制的方式来处理 SDS 存放在 buf[] 数组里的数据。所以 SDS 不光能存放文本数据,而且能保存图片、音频、视频、压缩文件这样的二进制数据。
  • SDS 获取字符串长度的时间复杂度是 O(1)。因为 C 语言的字符串并不记录自身长度,所以获取长度的复杂度为 O(n);而 SDS 结构里用 len 属性记录了字符串长度,所以复杂度为 O(1)。
  • Redis 的 SDS API 是安全的,拼接字符串不会造成缓冲区溢出。因为 SDS 在拼接字符串之前会检查 SDS 空间是否满足要求,如果空间不够会自动扩容,所以不会导致缓冲区溢出的问题。
  • 节省内存空间。SDS 结构中有个 flags 成员变量,表示的是 SDS 类型。
    Redis 一共设计了 5 种类型,分别是 sdshdr5、sdshdr8、sdshdr16、sdshdr32 和 sdshdr64。这 5 种类型的主要区别就在于,它们数据结构中的 len 和 alloc 成员变量的数据类型不同。
    sdshdr16 类型的 len 和 alloc 的数据类型都是 uint16_t,表示字符数组长度和分配空间大小不能超过 2 的 16 次方。
    之所以 SDS 设计不同类型的结构体,是为了能灵活保存不同大小的字符串,从而有效节省内存空间。比如,在保存小字符串时,结构头占用空间也比较少。
    除了设计不同类型的结构体,Redis 在编程上还使用了专门的编译优化来节省内存空间,即在 struct 声明了__attribute__ ((packed)),它的作用是:告诉编译器取消结构体在编译过程中的优化对齐,按照实际占用字节数进行对齐。

链表

list 结构为链表提供了链表头指针 head、链表尾节点 tail、链表节点数量 len、以及可以自定义实现的 dup、free、match 函数。
因为链表内存都是不连续的,意味着无法很好利用 CPU 缓存,链表节点的值都需要一个链表节点结构头的分配,内存开销较大,所以Redis 3.0 的 List 对象在数据量比较少的情况下,会采用「压缩列表」作为底层数据结构的实现,它的优势是节省内存空间,并且是内存紧凑型的数据结构。
Redis 5.0 设计了新的数据结构 listpack,沿用了压缩列表紧凑型的内存布局,最终在最新的 Redis 版本,将 Hash 对象和 Zset 对象的底层数据结构实现之一的压缩列表,替换成由 listpack 实现。

压缩列表

压缩列表是 Redis 为了节约内存而开发的,它是由连续内存块组成的顺序型数据结构,有点类似于数组。
压缩列表的缺陷也是有的:

  • 不能保存过多的元素,否则查询效率就会降低;
  • 新增或修改某个元素时,压缩列表占用的内存空间需要重新分配,甚至可能引发连锁更新的问题。

因此,Redis 对象(List 对象、Hash 对象、Zset 对象)包含的元素数量较少,或者元素值不大的情况才会使用压缩列表作为底层数据结构。

结构设计

压缩列表在表头有三个字段:

  • zlbytes,记录整个压缩列表占用对内存字节数;
  • zltail,记录压缩列表「尾部」节点距离起始地址由多少字节,也就是列表尾的偏移量;
  • zllen,记录压缩列表包含的节点数量;
  • zlend,标记压缩列表的结束点,固定值 0xFF(十进制255)。

在压缩列表中,如果我们要查找定位第一个元素和最后一个元素,可以通过表头三个字段(zllen)的长度直接定位,复杂度是 O(1)。而查找其他元素时,就没有这么高效了,只能逐个查找,此时的复杂度就是 O(N) 了,因此压缩列表不适合保存过多的元素。

另外,压缩列表节点(entry)的构成如下:

  • prevlen,记录了「前一个节点」的长度,目的是为了实现从后向前遍历;
  • encoding,记录了当前节点实际数据的「类型和长度」,类型主要有两种:字符串和整数。
  • data,记录了当前节点的实际数据,类型和长度都由 encoding 决定;

这种根据数据大小和类型进行不同的空间大小分配的设计思想,正是 Redis 为了节省内存而采用的。

分别说下,prevlen 和 encoding 是如何根据数据的大小和类型来进行不同的空间大小分配。

压缩列表里的每个节点中的 prevlen 属性都记录了「前一个节点的长度」,而且 prevlen 属性的空间大小跟前一个节点长度值有关,比如:

  • 如果前一个节点的长度小于 254 字节,那么 prevlen 属性需要用 1 字节的空间来保存这个长度值;
  • 如果前一个节点的长度大于等于 254 字节,那么 prevlen 属性需要用 5 字节的空间来保存这个长度值;

encoding 属性的空间大小跟数据是字符串还是整数,以及字符串的长度有关,如下图(下图中的 content 表示的是实际数据,即本文的 data 字段):

  • 如果当前节点的数据是整数,则 encoding 会使用 1 字节的空间进行编码,也就是 encoding 长度为 1 字节。通过 encoding 确认了整数类型,就可以确认整数数据的实际大小了,比如如果 encoding 编码确认了数据是 int16 整数,那么 data 的长度就是 int16 的大小。
  • 如果当前节点的数据是字符串,根据字符串的长度大小,encoding 会使用 1 字节/2字节/5字节的空间进行编码,encoding 编码的前两个 bit 表示数据的类型,后续的其他 bit 标识字符串数据的实际长度,即 data 的长度。

连锁更新

压缩列表新增某个元素或修改某个元素时,如果空间不不够,压缩列表占用的内存空间就需要重新分配。而当新插入的元素较大时,可能会导致后续元素的 prevlen 占用空间都发生变化,从而引起「连锁更新」问题,导致每个元素的空间都要重新分配,造成访问压缩列表性能的下降。
因此,压缩列表只会用于保存的节点数量不多的场景,只要节点数量足够小,即使发生连锁更新,也是能接受的。

哈希表

哈希表是一个数组(dictEntry **table),数组的每个元素是一个指向「哈希表节点(dictEntry)」的指针。
dictEntry 结构里不仅包含指向键和值的指针,还包含了指向下一个哈希表节点的指针,这个指针可以将多个哈希值相同的键值对链接起来,以此来解决哈希冲突的问题,这就是链式哈希。

哈希冲突

链式哈希

实现的方式就是每个哈希表节点都有一个 next 指针,用于指向下一个哈希表节点,因此多个哈希表节点可以用 next 指针构成一个单项链表,被分配到同一个哈希桶上的多个节点可以用这个单项链表连接起来,这样就解决了哈希冲突。

链式哈希局限性也很明显,随着链表长度的增加,在查询这一位置上的数据的耗时就会增加,毕竟链表的查询的时间复杂度是 O(n)。

要想解决这一问题,就需要进行 rehash,也就是对哈希表的大小进行扩展。

Rehash

在实际使用哈希表时,Redis 定义一个 dict 结构体,这个结构体里定义了两个哈希表(ht[2])。之所以定义了 2 个哈希表,是因为进行 rehash 的时候,需要用上 2 个哈希表了。
在正常服务请求阶段,插入的数据,都会写入到「哈希表 1」,此时的「哈希表 2 」 并没有被分配空间。

随着数据逐步增多,触发了 rehash 操作,这个过程分为三步:

  • 给「哈希表 2」 分配空间,一般会比「哈希表 1」 大 2 倍;
  • 将「哈希表 1 」的数据迁移到「哈希表 2」 中;
  • 迁移完成后,「哈希表 1 」的空间会被释放,并把「哈希表 2」 设置为「哈希表 1」,然后在「哈希表 2」 新创建一个空白的哈希表,为下次 rehash 做准备。
    image
    第二步很有问题,如果「哈希表 1 」的数据量非常大,那么在迁移至「哈希表 2 」的时候,因为会涉及大量的数据拷贝,此时可能会对 Redis 造成阻塞,无法服务其他请求。

触发条件:
image
触发 rehash 操作的条件,主要有两个:

  • 当负载因子大于等于 1 ,并且 Redis 没有在执行 bgsave 命令或者 bgrewiteaof 命令,也就是没有执行 RDB 快照或没有进行 AOF 重写的时候,就会进行 rehash 操作。
  • 当负载因子大于等于 5 时,此时说明哈希冲突非常严重了,不管有没有有在执行 RDB 快照或 AOF 重写,都会强制进行 rehash 操作。
渐进式 rehash

将数据的迁移的工作不再是一次性迁移完成,而是分多次迁移。
渐进式 rehash 步骤如下:

  • 给「哈希表 2」 分配空间;
  • 在 rehash 进行期间,每次哈希表元素进行新增、删除、查找或者更新操作时,Redis 除了会执行对应的操作之外,还会顺序将「哈希表 1 」中索引位置上的所有 key-value 迁移到「哈希表 2」 上;
  • 随着处理客户端发起的哈希表操作请求数量越多,最终在某个时间点会把「哈希表 1 」的所有 key-value 迁移到「哈希表 2」,从而完成 rehash 操作。

整数集合

整数集合是 Set 对象的底层实现之一。当一个 Set 对象只包含整数值元素,并且元素数量不大时,就会使用整数集这个数据结构作为底层实现。

整数集合本质上是一块连续内存空间,它的结构定义如下:

typedef struct intset {
    //编码方式
    uint32_t encoding;
    //集合包含的元素数量
    uint32_t length;
    //保存元素的数组
    int8_t contents[];
} intset;

可以看到,保存元素的容器是一个 contents 数组,虽然 contents 被声明为 int8_t 类型的数组,但是实际上 contents 数组并不保存任何 int8_t 类型的元素,contents 数组的真正类型取决于 intset 结构体里的 encoding 属性的值。

整数集合的升级操作

整数集合会有一个升级规则,就是当我们将一个新元素加入到整数集合里面,如果新元素的类型(int32_t)比整数集合现有所有元素的类型(int16_t)都要长时,整数集合需要先进行升级,也就是按新元素的类型(int32_t)扩展 contents 数组的空间大小,然后才能将新元素加入到整数集合里,当然升级的过程中,也要维持整数集合的有序性。

整数集合升级的过程不会重新分配一个新类型的数组,而是在原本的数组上扩展空间,然后在将每个元素按间隔类型大小分割,如果 encoding 属性值为 INTSET_ENC_INT16,则每个元素的间隔就是 16 位。

节省资源,不支持降级操作

跳表

Redis 只有 Zset 对象的底层实现用到了跳表,跳表的优势是能支持平均 O(logN) 复杂度的节点查找。

typedef struct zset {
    dict *dict;
    zskiplist *zsl;
} zset;

Zset 对象在执行数据插入或是数据更新的过程中,会依次在跳表和哈希表中插入或更新相应的数据,从而保证了跳表和哈希表中记录的信息一致。
Zset 对象能支持范围查询(如 ZRANGEBYSCORE 操作),这是因为它的数据结构设计采用了跳表,而又能以常数复杂度获取元素权重(如 ZSCORE 操作),这是因为它同时采用了哈希表进行索引。
struct zset 中的哈希表只是用于以常数复杂度获取元素权重,大部分操作都是跳表实现的。

跳表结构设计

跳表是在链表基础上改进过来的,实现了一种「多层」的有序链表,这样的好处是能快读定位数据。

typedef struct zskiplist {
    struct zskiplistNode *header, *tail;
    unsigned long length;
    int level;
} zskiplist;
typedef struct zskiplistNode {
    //Zset 对象的元素值
    sds ele;
    //元素权重值
    double score;
    //后向指针
    struct zskiplistNode *backward;
  
    //节点的level数组,保存每层上的前向指针和跨度
    struct zskiplistLevel {
        struct zskiplistNode *forward;
        unsigned long span;
    } level[];
} zskiplistNode;

Zset 对象要同时保存「元素」和「元素的权重」,对应到跳表节点结构里就是 sds 类型的 ele 变量和 double 类型的 score 变量。每个跳表节点都有一个后向指针(struct zskiplistNode *backward),指向前一个节点,目的是为了方便从跳表的尾节点开始访问节点,这样倒序查找时很方便。

跳表是一个带有层级关系的链表,而且每一层级可以包含多个节点,每一个节点通过指针连接起来,实现这一特性就是靠跳表节点结构体中的zskiplistLevel 结构体类型的 level 数组。

level 数组中的每一个元素代表跳表的一层,也就是由 zskiplistLevel 结构体表示,比如 leve[0] 就表示第一层,leve[1] 就表示第二层。zskiplistLevel 结构体里定义了「指向下一个跳表节点的指针」和「跨度」,跨度时用来记录两个节点之间的距离,实际上是为了计算这个节点在跳表中的排位
image

跳表节点查询过程

查找一个跳表节点的过程时,跳表会从头节点的最高层开始,逐一遍历每一层。在遍历某一层的跳表节点时,会用跳表节点中的 SDS 类型的元素和元素的权重来进行判断,共有两个判断条件:

  • 如果当前节点的权重「小于」要查找的权重时,跳表就会访问该层上的下一个节点。
  • 如果当前节点的权重「等于」要查找的权重时,并且当前节点的 SDS 类型数据「小于」要查找的数据时,跳表就会访问该层上的下一个节点。
  • 如果上面两个条件都不满足,或者下一个节点为空时,跳表就会使用目前遍历到的节点的 level 数组里的下一层指针,然后沿着下一层指针继续查找,这就相当于跳到了下一层接着查找。

跳表节点层数设置

跳表的相邻两层的节点数量的比例会影响跳表的查询性能。
跳表的相邻两层的节点数量最理想的比例是 2:1,查找复杂度可以降低到 O(logN)。

Redis 则采用一种巧妙的方法是,跳表在创建节点的时候,随机生成每个节点的层数,并没有严格维持相邻两层的节点数量比例为 2 : 1 的情况。

具体的做法是,跳表在创建节点时候,会生成范围为[0-1]的一个随机数,如果这个随机数小于 0.25(相当于概率 25%),那么层数就增加 1 层,然后继续生成下一个随机数,直到随机数的结果大于 0.25 结束,最终确定该节点的层数。

这样的做法,相当于每增加一层的概率不超过 25%,层数越高,概率越低,层高最大限制是 64。

为什么用跳表而不用平衡树?

  • 从内存占用上来比较,跳表比平衡树更灵活一些。平衡树每个节点包含 2 个指针(分别指向左右子树),而跳表每个节点包含的指针数目平均为 1/(1-p),具体取决于参数 p 的大小。如果像 Redis里的实现一样,取 p=1/4,那么平均每个节点包含 1.33 个指针,比平衡树更有优势。
  • 在做范围查找的时候,跳表比平衡树操作要简单。在平衡树上,我们找到指定范围的小值之后,还需要以中序遍历的顺序继续寻找其它不超过大值的节点。如果不对平衡树进行一定的改造,这里的中序遍历并不容易实现。而在跳表上进行范围查找就非常简单,只需要在找到小值之后,对第 1 层链表进行若干步的遍历就可以实现。
  • 从算法实现难度上来比较,跳表比平衡树要简单得多。平衡树的插入和删除操作可能引发子树的调整,逻辑复杂,而跳表的插入和删除只需要修改相邻节点的指针,操作简单又快速。

quicklist

Redis 3.2 的时候,List 对象的底层改由 quicklist 数据结构实现。其实 quicklist 就是「双向链表 + 压缩列表」组合,因为一个 quicklist 就是一个链表,而链表中的每个元素又是一个压缩列表。

quicklist 解决压缩列表的办法,通过控制每个链表节点中的压缩列表的大小或者元素个数,来规避连锁更新的问题。因为压缩列表元素越少或越小,连锁更新带来的影响就越小,从而提供了更好的访问性能。

结构设计

typedef struct quicklist {
    //quicklist的链表头
    quicklistNode *head;      //quicklist的链表头
    //quicklist的链表尾
    quicklistNode *tail; 
    //所有压缩列表中的总元素个数
    unsigned long count;
    //quicklistNodes的个数
    unsigned long len;       
    ...
} quicklist;

typedef struct quicklistNode {
    //前一个quicklistNode
    struct quicklistNode *prev;     //前一个quicklistNode
    //下一个quicklistNode
    struct quicklistNode *next;     //后一个quicklistNode
    //quicklistNode指向的压缩列表
    unsigned char *zl;              
    //压缩列表的的字节大小
    unsigned int sz;                
    //压缩列表的元素个数
    unsigned int count : 16;        //ziplist中的元素个数 
    ....
} quicklistNode;

链表节点的元素不再是单纯保存元素值,而是保存了一个压缩列表,所以 quicklistNode 结构体里有个指向压缩列表的指针 *zl。
image
在向 quicklist 添加一个元素的时候,不会像普通的链表那样,直接新建一个链表节点。而是会检查插入位置的压缩列表是否能容纳该元素,如果能容纳就直接保存到 quicklistNode 结构里的压缩列表,如果不能容纳,才会新建一个新的 quicklistNode 结构。

quicklist 会控制 quicklistNode 结构里的压缩列表的大小或者元素个数,来规避潜在的连锁更新的风险,但是这并没有完全解决连锁更新的问题。

listpack

因为 quicklistNode 还是用了压缩列表来保存元素,压缩列表连锁更新的问题,来源于它的结构设计,所以要想彻底解决这个问题,需要设计一个新的数据结构。

于是,Redis 在 5.0 新设计一个数据结构叫 listpack,目的是替代压缩列表,它最大特点是 listpack 中每个节点不再包含前一个节点的长度了,压缩列表每个节点正因为需要保存前一个节点的长度字段,就会有连锁更新的隐患。

结构设计

image
主要包含三个方面内容:

  • encoding,定义该元素的编码类型,会对不同长度的整数和字符串进行编码;
  • data,实际存放的数据;
  • len,encoding+data的总长度;

可以看到,listpack 没有压缩列表中记录前一个节点长度的字段了,listpack 只记录当前节点的长度,当我们向 listpack 加入一个新元素的时候,不会影响其他节点的长度字段的变化,从而避免了压缩列表的连锁更新问题。

Loading comments...